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1. Introduction 

The engineer who must r e l y  on natural   frequency  determination 

in   p red ic t ing   r e sponse   i n   l i nea r   s t ruc tu ra l   v ib ra t ion   f r equen t ly  

needs a simple method of estimating how the  accuracy  of   these 

determinations are related to   t he   accu racy   o f  h i s  estimations  of 

t he  masses  and s t i f f n e s s e s   i n  the s t ruc ture .  He  a l s o  may wish t o  

determine which of the masses and/or  st iffnesses have  major  influence 

on the   loca t ion   of   cer ta in   na tura l   f requencies . In  t h i s  paper, we 

present a method directed  towards  meeting  these  needs. 

The method provides  an  estimator  for  the  standard  deviations 

(S.D.) of a natural  frequency  in  terms  of  only  second  order 

propert ies   of  t h e  system  parameters. A simplif ied form of t h i s  

estimator i s  frequently  an  upper bound; when it i s  small, t h e  S.D. 

of a natural   f requency  (n . f . )  i s  general ly  s m a l l ;  when it i s  l a rge ,  

the  S.D. of a natural   frequency i s  not  necessarily large. 

Before  describing our work, some comments on background are 

in   o rder .  

Rayleigh [ 1 r* considered  the  following  problem: 

He could  easi ly  determine the n . f . ' s  and  normal modes of  systems 

having  regular  properties.  He wanted t o  be able t o   u s e   t h e s e  

r e s u l t s   t o  compute n . f . ' s  and  normal modes of  systems which d id  

not   dif fer   appreciably from  one of  these  regular  systems,  but 

which were d i f f i c u l t   t o  deal with by themselves. He proposed a 

per turbat ion method that he could  use t o  estimate the   n . f . ' s  and 

* Numbers in   b racke t s   r e f e r  t o  the  references at; the end or" the 
report .  



normal modes o f   t he  second  system  using  the  normal modes and 

n . f . ' s   o f   the  first system  and t h e  amounts by  which the  parameters 

of  the  second  system  differed  from  the  f irst .  He proposed a 

first order  formula  for  correction of t he  modes and a second 

order  formula  for  correction  of  the  n.  f .  ' s .  Clearly,  Rayleigh's 

scheme could be employed to   es t imate   n . f .  change  due t o  change 

i n  parameter  values. However, i f  one puts  Rayleigh's scheme i n  

a su i t ab le  form fo r   t h i s   pu rpose ,  it soon becomes apparent   that  

the changes in  the  parameter  values become involved  in   the computa- 

t i o n s   i n  a f a i r l y  complex  manner,  making it d i f f i c u l t   t o  develop 

an understanding  of how they  influence a given  n.f.  and  corresponding 

normal mode. In  a l l  events,  we cannot   recal l  a recent  use  of 

Rayleigh' s formulas. 

Soong [ 2 ]  i n  a series of  papers i n  t he   ea r ly  and mid 60's 

considered  the  changes on S.D. of  natural   frequencies  of a 

l inear   cha in  due t o  changes i n  parameter  values. By explo i t ing  

t h e  form of the  frequency  equation  for a N-degree of  freedom 

chain  having  the same mean masses and springs and using a per turbat ion 

technique,  he was able t o  determine  the S.D.'s of   the   n . f . ' s ;  

these  results became reasonably  simple when t h e  mass changes were 

regarded as independent random variables   having  the same d i s t r ibu t ions  

and when the  spring  changes were of similar type. H i s  results 

ind ica ted   tha t   the  S.D. ' s would increase  with  increasing mean n. f .  

When one thinks  of  hundreds  of n. f .  ' s  with  ra is ing  f requencies ,  

t h i s  i s  a dis turbing result even i f  the S.D.'s of the  parameter 



values  are  reasonably small. Because  he made use  of   the  special  

form  of the  frequency  equation  for a N-degree of  freedom l i n e a r  

chain  with  ident ical  masses and i den t i ca l  springs, it is  d i f f i c u l t  

t o  extend  Soong's  approach t o  more general  types  of  systems. 

I n   h i s   t h e s i s  131 Collins  proposed a per turbat ion scheme 

app l i cab le   t o   gene ra l  N-degree of freedom linear  systems by  which 

it i s  p o s s i b l e   t o  estimate t h e  S.D.'s of t h e   n . f . ' s   i n  terms of 

the  covariances  of  system  parameters  and a se t   o f  2N2 p a r t i a l  

der ivat ives .  H e  started from the matrix  equation 

and  developes  the  result  

From t h i s  he a r r ives  at h i s  formula  for  Variance Xi or   r a the r  

For a linear chain  his   resul ts   agree  with  those  of  Soong. For 

more complex systems, we have  not  had the   t ime   t o  examine h i s  

r e s u l t s .  It i s  ou r   t en t a t ive  view that as i n  Soong's  case it 

will b e   r e l a t i v e l y   d i f f i c u l t   t o   o b t a i n  results by t h i s  method. 

3 



Wilkinson  in  his  book  "The  Algebraic  Eigenvalue  Problem" 

[4] gives  some  general  results  which  are  as  follows:  let 

A .% B be n x n matrices; 

a be  the  eigenvalues of A , 
S 

a' be  the  eigenvalues  of A + B ; 
S 

if  for  all i & j lbijl d E 

then  for all s 

If nE < < 1 and la, I > > 1 , this  is a very  general  result; 
it  is  independent of s , however,  and so is not of great  interest 

to us. 

The  recent  book [ 5 1  by  Mehta  on  Random  Matrices  presents  the 

physicists  view of the  eigenvalues of random  matrices. As these 

interests  largely  center  on  the  density of the  eigenvalues  rather 

than  on  the  distribution of individual  eigenvalues,  they  are  not 

of direct  interest to us. 



Let us  consider two l i n e a r  dynamical  systems  defined as follows: 

. .  

where summation convention i s  used.  These  systems, i n i t i a l l y  

unconnected, will be joined by springs kl, k2.. . . . .k which will 

connect q1 with pl,  q2 w i t h  p2, ... and 4( w i t h  p 

respect ively.  

X 

X 

Let the   na tura l   f requencies  and normal modes of I be 

and l e t   t h o s e   o f  I1 be 

5 



where 6 is t he  Kronecker 

convention is used. 
ij 

The natura l  fscquencj e6 

fol-Lows : 

d e l t a ,  

of the 

and repeated subscript summation 

coupled systems are found a.s 

Assume forces  P coscft, ...... P cosal; a c t  a t  ql,. . .q, and forces  

-P cosat,. , . , . .-P cosat ac t  at pl,. . .p, . In terms of t h e   o r i g i n a l  

mcoupl.ed systems coorfiinates $,(t) and 6 (t) we then have 

1 X 

1 X 

U 

and 

for I and I1 respect ively.  The eqmtions of motion are 



I 

where the re  i s  no summation on t h e  same subscr ipt  when enclosed  in  

the  parenthesis,   hence,  

X 
D E ( ' )  

I 

U U 

where 

i = 1,. . . .N1 and r = 1,. . . .Ne 

In  obtaining  equations (2.61, we have  solved (2 .5)  and made use of 

the f irst  equation  of (2 .3)  and ( 2 . 4 )  respect ively.  If we write 

(2.7) qi = A.cosat, pr = Brcosot 
1 

then 

N1 
, i = 1,. . . .N1 

7 



X 

, r = 1, .... N2 
u=l  x2 - u2 

U 

The frequency  equations are determined by subs t i t u t ing  (2.8) i n t o  

the  equations 

The case where x = 1 , with  only  one  connecting  spring, i s  of 

s p e c i a l   i n t e r e s t  and a l so   s impl ic i ty .  The per t inent  formulas from (2.8) 

and ( 2 . 9 )  a r e  

- P1 = kl(A1 - Bl) 

or 

Equation (2.11) i s  t h e  frequency  equation for  t h e  coupled  system. 



The roots   of  t h i s  equat ion  are   the  (angular)   natural   f requencies;  we 

shal l   denote  the roots  by U1,g~.UN1+N2 

The corresponding mode shapes are p ropor t iona l   t o  

w = 1 , . . . N  + N2 1 

r = 1,. . .N2 r u=l  A2 - u2 u w  

For la ter  convenience we wr i te  

Let us now discuss  the implications  of the above  formulas i n   t h e  

special   case when N = 2, N = 4 . 1 2 

The case we have i n  mind i n i t i a l l y  i s  that i n  which the  two 

degree  of freedom  system,  System I, i s  t o  be mounted on another 

system f o r  which N2 = 4 . It i s  easy t o   s e e  that  



System I1 System I 



and hence,  (2.7) becomes 

- q1 - - I P cosot + 1 P cosat 
U 2  u; - u2 1 

Thus, t h e   r a t i o  of the   response   to   forc ing   func t ion  is 

Figure  2.2 shows System 11. Equation 2.13 gives  gII . 
Figure 2.3 shows typ ica l   p lo t s   fo r  gI and g where we I1 

have set N2 = 4 and placed w2 in   the   mids t   o f  X1, X2, X3, 

and X 4  . When the  coupling kl i s  l i g h t ,  - l/kl i s  l a rge ,  

negative,  and p l o t s  as the   so l id   ho r i zon ta l   l i ne  at the bottom 

of   the figure. The roo t s  of (2.11) f o r  kl small a r e  shown as 

so l id   do t s  on t h e  a-axis and  denoted by ol, a2 ,  ... 
Since kl i s  small, providing  only w e a k  coupling between the  

two systems, u = w = 0 

a5 = X 3  , and u6 = X 4  . The mode shapes  are  determined from 

'6 

1 1  , u 2 = x 1  , u " W 2  , u ) + = X 2  , 3 

(2 .12);  when wr i t ten   ou t   for   th i s   case   they   a re  



-I/K, LARGE 

/ 
/ 

I 
I 
I 
I 
I 

Figure 2.3 



For w = 1 , all terms  in (2.14) are  small  except f o r  the 

first  term  on  the  right  of  each  of  the  first  two  equations;  this 

is  due  to the fact  that  all  denominators  are  large  compared to 

u which  is small. Thus,  for  this  choice  of w 1 

For w = 2 , a l l  terms  are small except  for  those  which  are  first 

on  the  right of the  last four of (2.14), since now hf - ug is 

s m a l l  in  all the denominators.  Hence, 



Similar   resul . ts  are obtained when w equals 3,  4, 5 ,  and 6. When 

t h e  coupl.j.ng i s  smr1.73., we conclude  there is l i t t l e  in t e rac t ion  

betweell the two systems a,ccordinp, t o  OUT' r e s u l t s ;  this i s  what  one 

~ 1 - p  plo t  of - l/kl when kl is  1a.rge i s  shown in  Figure 2.3 

by t h e  dashed l i . ne  just .  below t h e  a-a.x.is. The roots   o f  (2.11.) 

a r e  now shown by c i r c l ed  crosses and labeled u i ,  a;, . . . . , 0; i 

t h e y  d i f f e r  substa.nti.a.lI.y frov t h e  al, a2, . . . a6 respect ively.  

?'he heawJ* segments be1.o~  the   a -ax is   denote   in te rva ls   tha t   conta in  

which cam he dram a.t  t h 5 s  point i s  tha.t. the  a and corresponding 

mode shs.pes are c l o s e   t o  wl, w2, X1 , . . , All and. t h e i r  mode shapes, 

w 

respect lvely,  when kl i s  small, w i t h  differences becoming l a r g e r  as 

Ll increases.  

It i s  nov easy t o   s e e  how t h e   r e s u l t s   t o  t h i s  point  can be 

used t o  de te rmine   the   var iab i l i ty   in   the   na tura l   f requencies  of a 

system  due t o   v a r i a b j . l i t y   i n  one spring,  provided tha t  spr ing,  

when cu t ,   separa tes   the   o r ig ina l   sys tem  in to  two separate  subsystems. 



To summarize,  let  the  two  subsystems  be  denoted  by  System I 

and  System 11, with  defining  equations (I) and (111, respectively. 

Determine  the  natural  frequencies  and  normal  modes of each  as  in 

(2.1) and (2.2). Next  graph  the  functions g,(u) and g (6) 

which  are  defined in (2.13). Let (ki, k;) denote  the  range of 

kl . Then  determine  the  natural  frequencies ui, u;, . . . 6; +m 
corresponding to ki , and u;, u;, .... ut' corresponding to 

ki , by  the  same  procedure  used to determine  the  natural  frequencies 

in  the  above  example,  (See  Fig. 2.3). The  ranges  in  the  natural 

frequencies  due to  the  range (k' kt') in  kl  are 

I1 

1 2  

N1+N2 

1' 1 

The  spacings  of  the  natural  frequencies  in  System  I  and  11,  their 

corresponding  mode  shapes,  and  the  slope of the  function  of 

on  the  right of (2.11) determines  these  ranges. 

A second  general  conclusion  can  be  drawn  when  one  system,  say 

System 11, is  very  massive  when  compared  with  the  other.  For 

under  this  circumstance,  the  ars  of (2.2) will  be  large  in 

comparison  with  the  a  of (2.1); this  means  that  the (U 1 
i 1 r - 

will  be  small  in  comparison  with  the 6 ('I and  the  gII(u) 

function  will  have  a  small  slope  everywhere  except  in  the  neighborhood 

of the Xu , (See  Figure 2.3). It  is  now  easy to see  that  only 

the  natural  frequencies  corresponding to  those  of  System  I  will 

i 

have  appreciable  variability  due to variability  in kl 



I 

While a digital  computer  utilizing  the  Monte  Carlo  approach  can 

be  used to determine  the  variability  in  natural  frequencies  due  to 

parameter  variability,  the  method  just  described  does  provide a 

useful.  adjunct to  physical  understanding  when a subsystem I is to 

be  attached  somewhere  on a large  system 11. For  then, all informa- 

tion  needed  for  evaluating gI and g (at  different  possible 

attachment  points)  would  be  available,  and  it  would  be  relatively 

simple  to  explore  the  influence of variability  in  the  attachment 

spring  constant  on  the  natural  frequencies on this  graphical  basis. 

Moreover, a graphical  result  is  much  simpler  to  comprehend  than a 

mass  of  numbers,  providing  as  it  does a simple  visual  summary of 

a vast  amount  of  numerical  information. 

I1 



3.  Rayl-e-iih_'-s- Correct ions-   to   Natural  Fr-e-quency and  Corresponding 
Mode Shape Due t o  Changes i n  Parameter  Values. 

Rayleigh 111 ca l cu la t e s  the changes in   natural   f requency  and 

corresponding mode due t o  changes i n  the s t i f f n e s s  and mass 

parameters  of a system.  Although his  motivation  for  such a study 

was different* from ours ,  it is  ins t ruc t ive   t o   r ev iew h i s  r e s u l t s  

and see what l i gh t   t hey   ca s t  on our problem. 

L e t  q l,.. . .qN be t h e  independent  coordinates of the   sys ten  

w i t h  T and V given by 

Let O1,....ON be  the  corresponding  normal  coordinates w i t h  

(3.2) 2T = a O2 , 2V = cre: r r  

where 

* He uses  approximations to   s imp l i fy  the analysis;  changes  in  pmvmeter 
values are necessary   to  change from simplif ied  system  to  real system.. 

[ l ]  See  Rayleigh, "Theory of Sound", Section 90, Vol. 1. 



Then the  equat ions of motion i n  terms of the 0 ' s  are 

The modal. so lu t ions  of ( 3 . 4 )  are 

(3.5) er  % cos(w t + $ r ) ,  eS = o i f  s # r;  r , s  = 1, ..., N r 

where 

Thus, i n  any modal solution  of (3.4 ) only one  normal coordinate 

i s  non-zero at a time. 

Xow l e t  us assume the  parameters are changed. In  terms  of 

t h e  i3 ' s ,  t h i s  means t h a t  

( 3 . 7 )  2T' E 2 ( T  + 6T)  = a e 2  + 6arsBrBs 
. .  

r r  

where t h e  6ars and  6crs represent the changes,  respectively, 

i n   t h e  mass and s t i f fness   parameters   in   terms of the 0-coordinates. 

The equations  of  motion  of  the  changed  system,  that i s ,  the new 

equation similar t o  (3.41, a r e  



s = 1, .... N 

The so lu t ions  of the coupled  equations (3 .8)  are 

(3 .9 )  eS = uscos(Xt + #) ,  s = 1, ... . N 

where us , X and # are constants.  The subs t i t u t ion  of 

( 3 . 9 )  i n t o  ( 3 . 8 )  y ie lds  

We assume at  t h i s  point  that t h e  6a and best are of st 

f irst  o rde r   i n  small quan t i t i e s  with r e s p e c t   t o  the a and c 

respect ively.  If t h e  6ast and dest were zero,  all but one 

of t h e  us , say ur , would be zero. When the  &ast and 

S S 

%t a r e  small, it i s  reasonable   to  assume i n i t i a l l y   t h a t  all 

u f o r  s # r are small with   respec t   to  ur ; we make t h i s  

assumption.  Thus, t o   r e p e a t ,  we are assuming that the bast , 
S 

and u f o r  s # r are of first o r d e r   i n  small quant i t ies .  
S 

L e t  us  now examine those of equations (3.10) f o r  which s # r . 



where  the  summation 1' excludes t = r . The  terms  under  the 
summation 1' are of second  order  in  small  quantities  while  the 

other  terms  are of first  order. 

Next  consider  the  equation of (3.10) for  which s = r . 

L 
S 

The  second  line 

in  small  quantities, 

and  third  line 

respectively. 

= o  

are  of  first  and  second  order 

If we  rewrite  this  equation  as 

and use (3.11 ) , Ire obtain 

+ higher  order  terms 



With (3.11) and  (3.12), we have a scheme for  evaluating  changes 

in   na tura l   f requency  and i t s  normal mode a r i s i n g  from  changes 

i n  parameter  values. 

Rayleigh  uses  (3.11)  and  (3.12) as fo l lows:   F i r s t ,   he  

neglects  the second  order terms i n  (3.11),   obtaining 

Then, s ince   fo r  the unchanged o r   i n i t i a l  system A’ 2 wz  r 9  

Equation  (3.121,  or  the  one  before it, determines the corrected 

natural   frequency  corresponding  to 

Equations (3.13) and  (3.14) are due t o  Rayleigh. 

We note that t h e  change i n  mode shape  (3.13) i s  of first 

o rde r   i n  small quantit ies  provided w i s  not   near   to  w 

f o r  s = 1, ... N; s # r . The first order   correct ion term i n  

(3.14) i s  t h e  first term on t h e  r i g h t ;   t h i s  term represents  the 

c o r r e c t i o n   t o  w2 a r i s i n g  from only the changes i n  ar and 

c but  not due t o  changes i n  mode shape. Changes i n  m z  due t o  

changes i n  mode shape are of second o rde r   i n  small quant i t ies .  

s r 

r 

r 



If we  write  the  equation  before (3.12) and the equation  after 

(3.12) in  the forms 

respect. ..i v e l g ,  an approximation scheme  can  be  set  up  in  order to 

i q m v c :  t h e :  a , c ~ ~ t - a ~ j r  of the  corrections.  We  shall  not  pursue  this 

Cornp!iZ.~i.jone.l ly, there is not  much  difficulty  involved  in 

cvsl;~nf..irrf: ::.vJ;J of t h e  above  expressions  provided  we  have  the 

na-i;ura3 frer!-uwrIas  w and the  corresponding  mode  shapes 

of t h e  o r i p ; i n d  sy-stem,  and the 6s and 6crs are  evaluated. 

The w and n ( r )  must be  evaluated from the or ig ina l  system 

(I), a n d ,  if Aa and Ac are  the  changes  in  the  physical 

(r 1 
r n J  

rs 

r j 

i J  ij 
parwcters  e and c , respectively, we have ij i3 

A t  t h i s  point, a difficulty should be mentioned. 

' ', , .  



The a and  c are   obtained from the  physical   system  in i d  i d  
terms of   the  or iginal   (or   physical)   coordinates .  Thus, these  

quantit ies  can  be  given a phys ica l   i n t e rp re t a t ion   i n  terms of 

the s t ruc ture .  The  same is t r u e   f o r   t h e  & a  ana the c . 
However, t h e  dars and t h e  6crs come from (3.16) and  involve 

the mode shapes of t he   o r ig ina l  system.  Physical  interpretation 

i j  i d  

of  changes in   na tu ra l   f r equenc ie s  and mode shapes as given by 

(3.15) i n  terms  of  the 6a and the  6c  now become d i f f i c u l t .  

Hence,  one lo ses  at t h i s  point  physical   contact w i t h  t h e  
i d  i d  

o r ig ina l  problem,  except in  special   cases.   (See  Rayleigh [l], 

Section 185, f o r  example. 1 

If t h e  cSa and 6ciJ are  regarded as r .v . ' s  wi th  zero 
i d  

means and s m a l l  variances,   then  the 6ars and  6crs will be 

r .v . ' s   wi th   the  same propert ies .  Then, us ing   the  f irst  of (3.15), 

we obtain 

where  us/ur must be  obtained  from  the  second  of (3.15). A 

similar formula  can  be  obtained  for E{X2) . Upon expanding  out 

the express ions   in   the   cur ly   b racke ts  and retaining  second 

products  and  second  degree terms i n   t h e   r . v . ' s ,  6ars and  6crs , 
it i s  poss ib le   to   ob ta in   es t imates   for  mean frequencies and t h e i r  

variances.  We have  not  done t h i s  because  physical   interpretation 

o f   r e su l t s  i s  d i f f i c u l t .  



Rayleigh's method  does provide a computational scheme for 

estimating  change in n.f.'s due to parameter change, but  it does 

not lend  itself to engineering  interpretation.  Thus, we shall 

not pursue it further. 



4 ,  A D r i  ef h v i e w  of Ikan- _Square  Approximate  Systems* 

L e t  us  consider a holonomic system  with  N-decreesof  freedom 

arid independent  coordinates ql,. . . .qI, . L e t  t h e   k i n e t i c  and 

poten-ti.s.1 energies  be 

. .  
(4.1 1 2T = Aijqiqj , 2 v = c  i j  q q  i j 

respec t ive ly ,  where dots denote time der iva t ives  and summation 

conventi.on i s  used. The random var iab les  Aid and C i j  form 

o sample systems  with sample values z and c 

r e spec t ive ly ,  w i t 1 1  meali val.ucs 

i j  ,u i j , a  ' 

For all samp1.e values of t h e   r . v . ' s  Ai5 and Cij, a i j  = a . .  
J l , a  ' . .  

C and a g . ~  and c i j , u  j i , a  i J  Y 1 . j  i j  , u q i q j  are pos i t i ve  d e f i n i t e  

quadratic forlns f o r  all u . 

where 

* A more d e t a i l e d  development; of mean squared  ap;)roximste ZyStecis  can be 
found in [ G I .  



g(X) >, 0 for. X 1 < A < X  2 

= 0 otherwise 

and the u are   the  coordinate   ampli tudes.  It should  be  noted  that 

g(  X )  i s  an a rb i t ra ry   weight ing   func t ion   sa t i s fy ing  the above condition 
j 

and X1 and X2 a r e   a r b i t r a r y  bounds. The mean square   osc i l la tor  

assoc ia ted   wi th   the   in te rva l  ( A1, X*) has a mode shape  associated with 

t h i s   i n t e r v a l  which i s  obtained by  minimizing I ( u , g )   s u b j e c t   t o  the 

condition 

Let E j  denote  the set of u which  minimize I ( u , g )  . It i s  c l e a r  

that  these   cons t i tu te   the   e igenvec tor   o f   the  smallest eigenvalue  of 

I ( u , g )  ; we define 

J 

5 

If g( X )  i s  a de l ta   func t ion  6(X-y;) centered at one of   the 

natural   f requencies ,  , of t h e  mean system  defined by the  equat ion 

. .  

and i f  the 5 are p ropor t iona l   t o   t he  kth mode shape 
n J  (k) of  

t h e  mean system,  then  for  the mean system 



O n l y  i n   t h i s  particular  case i s  I(* ) ever  zeroI 

If, with g(A) still a d-Mct ion centered on w with k 
(4 .3)  written in  the form 

where 

(4.9) I ~ , ~ ( U , W ~ )  = [cijcia-u2(a k ij c i a  +c ijaiQ 1 

+ u4, k ijaiQ3 uj'R 

+ w 4  Cov AijAia] u u k J a  
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With disorder  small, t h e  5 which  minimize I(u,6(A-o,) ) will 

b e   c l o s e   t o   t h e  TI (k)  . It now fol lows  that  
j 

J 

Because of (4.7) and t h e   f a c t  that I (u,w,) i s  t h e  

I(u,G(X-wk)) of t h e  mean system we no te   t ha t  
090 

Thus, 

where I (n (k) , wk) i s  e a s i l y  computed from the  information 

ava i lab le  on t h e  mean system  and on t h e  second moments of t h e  
1 ,o 

parameters. 

Deta i l s  on appl icat ions and  uniqueness of M. S. approximate 

systems are given i n  [ 6 ]  and [ T I ,  respect ively.  



5. Derivation of Estimator  for Upper Bound of the  Standard  Deviation 

of a Natural  Frequency. 

It is possible   to   der ive  our   es t imator   in  a number of  ways under a 

var ie ty   of   condi t ions.  The der ivat ions we shall give  here are selected 

because of the i r   s imp l i c i ty  and  because  they are t h e   s i m p l e s t   t o  use i n  

prac t ice .  

L e t  us first  consider the  c a s e   i n  which the  masses a re   de te rminis t ic ;  

we then  select   (or  determine)  coordinates so t h a t  the  system i s  defined 

by the  equations 

ri . 
(5.1.) 2T = 1 q: 2 v = c  q q  

i=l i j  i j 

where 

(5 .2)  Prob{C = c i j  i j , a   j i , a  = c  3 = p u 2 0  

m 

We t h u s  contemplate a se t   o f  m sample  systems  each w i t h  N degrees 

of freedom defined by the  equations 

which  have probabili ty  pu  of  occurrence.  Let the  natural   f requencies  

of a sample  system be 



w < w  < l,o 2,0 

with  corresponding  mode 

... w 
N , U  

shapes (r)- ryj=l, .... PI; o=ly ... m . 3 ,a 
Then  we  have (0 is  fixed 

where  the u are  coordinate  amplitudes  as  in  Section 4, and  the 
j 

V 
r YO 

are  the  corresponding  normal  coordinate  amplitudes  for  the 

a-sample  system. 

For  the  mean  system  defined  by  the  equations 

. .  

we have  for  natural  frequencies  and  corresponding  normal  modes 

Using ( 4 . 3 ) ,  Ire find  that 



where we  have employed the last two of (5.4) t o  transform t o  the 

normal  coordinate  amplitudes vr,u 
If  there is no disorder, 

where 

Vk ,(T = 1  , = o  for  r # k 
¶U 

If there is disorder, 



m N 

N 

r=l 
where 1' denotes  the sum excluding r = k . For disorder  

su f f i c i en t ly  small, t he  v '  w i l l  satisfy approximately  the 

second of (5.91, i . e .  
r 3 0  

Thus, 

We now wish  t o  show t h a t   t h e r e   e x i s t s  an E* such t h a t  



where a i s  i n  t h e   i n t e r v a l  (al, a2) and 

If we rewrite (5.14) as 

a 2 
(5.16) J ( ~ - a ) ~ [ x ~ + 2 a x - 3 a ~ + ~ ~ a ~ ]   f ( x ) d x  >, 0 , 

a 1 

we n o t e   t h a t   t h i s   i n e q u a l i t y  w i l l  b e   s a t i s f i e d   i f   t h e   t e r m  i n  square 

brackets i s  non nega t ive   i n   t he   i n t e rva l  (al, a2) . A graph of 

t h i s   t e r m  i s  shown in   the   ad jacent   f igure .  The roots  are at 

\ \ I L 

Figure 5 . 1  



E2a E2a -3a + - and a - . If c2 is  chosen  sufficiently  large 

so that  the  interval (al, a2)  is  also  as  shown,  the  inequality 

(5.16) is  obtained.  Thus,  for  disorder  sufficiently  small 

In  particular,  we  note  that  for E = 1 the  above  discussion  implies 2 

that (5.17) will  hold  if  the  disorder  is  restricted so that 

3 q 4  < Wk,a for all k and u ; disorder  will  indeed  be  large 

for  this  to occur. We  also  know  that  the  second  moment 

about  any  point w is  not  less  than  the  variance, u2 , of w - k k k '  
thus , 

m 

and,  hence,  we  may  write (5.13) as 

or 



The quan t i t i e s  E~ and E~ approach  zero as the   d i sorder  

approaches  zero. A n  estimate f o r  can  be  obtained from t h e  

first of  (5.12) and t h e  second of  (5.10);  with a spec i f ied  amount 

of   disorder ,   calculate   several  n (r) ; t h e  n (k) a re  hewn f o r  

t h e  mean system;  then 
3 ,a 3 

can  be  evaluated  and  from 1-w2  we can estimate as 
k , j  

min(l-w2 ) . By reducing   the   d i sorder   to  a lower  level  and 
U k,u 

repeat ing  the above ca lcu la t ions ,  we obtain  another  estimate of 

E In  t h i s  way, we f ind  a sa t i s fac tory   va lue   for  E for   d i sorder  1 '  1 
su f f i c i en t ly  s m a l l .  

As mentioned e a r l i e r ,  a value of E = 1 w i l l  be sa t i s f ac to ry  2 

for small disorder ,  a check  being  provided by t h e  f e w  w computed r .a 
when evaluat ing  the rl ( r )  needed i n  (5.20). 

J ,a 
We note,  however, that  i n  two steps,  going  from (5.11) t o  

(5.13) and  going  from (5.13) t o  (5.171, pos i t ive   quant i t ies  have 

been removed from t h e   l e f t  of (5.19). For these  reasons,  we shall 

use   in  most cases an uncorrected form  of (5.19) ; namely 

3 6k 

The ease  in   evaluat ing t h i s  expression,   in  which only  propert ies   of  

t he  mean system  and 2nd  moments of  parameters  are  required,   also 

recommends its use. 
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We a l so   no te   t ha t  our est imator  (5.19) could be improved with 

add i t iona l   e f fo r t  by  employing the   quan t i ty  I ( & '  ,wk) ins tead  of 

Consider now t h e  more general   case  with  disorder   in   the masses and 

spr ings by replacing (5.1) with 

(5.22)  2T = A q.q  
. .  

i j l j  2v = cijqiqj 

where 

.. 

1 pa = 1, E{Aij) = aijy E{Cijl = c 
a=l  i d  

We first   determine  the  non-singular  l inear  transformation* 

which reduces  the mean system t o   t h e  form 

m . 
(5.25) 2; = 1 y: , 2V = c' y.y  

i=l - i j l j  

where 

(5.26) c! = c f .f 
l j  rs rl s j  

* I n  cer ta in   cases   obtaining  this   t ransformation may be a formidable  task.  

36 



I 

Then  we  write 

(5.27) a' = a  f f c' 'C f f ij,u  rs,u ri s j  ' ij ,u rs,u ri SJ 

We note  that  the  transformation (5.24) has  been  chosen so that  the 

mean  system  mass  matrix  {a 1 reduces to {6 1 ; this  means 
id  id 

that  the  sample  values a will  be  approximately  equal to 6 
id, iJ 

for  all u , the a' being  approximately  equal to  unity  while i d  ¶U 
the a'  for i # j will  be  approximately  equal to zero. 

id '(J 
In  terms of the  y-coordinates,  let  the  natural  frequencies 

and corresponding  normal  modes of the  mean  system  satisfy  the 

equations 

and  let  the  natural  frequencies  and  corresponding  normal  modes of 

the  sample  systems  satisfy  the  equations 

Equation (5.11) must  now  be  replaced  by 

37 



where 

I n  v i r tue  of the   p roper t ies   o f  a! and f o r  small system  disorder, 

we ha,ve 

YO 

and thus 

Equation (5.13) is therefore   replaced by 



e t o  which i s  an est imator   for  ak . The lack  of inequal i ty  is. du 

the   fac t   tha t   t e rms   d i scarded  on t h e   r i g h t  of (5.30) are   not  

individual ly   posi t ive.  A t  t h i s   t i m e  we have  not  been able t o  

es tabl ish  that   the   second  term on t h e   r i g h t  of (5.30) ie always 

pos i t ive  as was the  corresponding  term on the r i g h t  of (5.11). 

There i s  another  possible way t o  proceed  which  might  prove 

useful,   al though we have  not as yet  explored it. We r e c a l l  that 

39 



While t h e   r i g h t  hand side of t h i s   equa t ion  i s  of the  same form as 

t he   r i gh t  hand s ide  of (5.10) and r ead i ly   l eads   t o   t he   r i gh t   o f  

(5.18), it i s  d i f f i c u l t   t o   e v a l u a t e  $(u, yc) as sample mode shapes 

axe involved.  This will be pursued  further  in  Section 7. 



" 

Appendix 1, Section 5. 

To establish (5.121, we  proceed as follows with  an  obvious  change 

in  notation: 

We must  show  that an > 0 exists  such  that 

(a) I (x2-a2  l2f  (x)dx = ( ~ + a ) ~  (x-al2f  (x)dx 

where  f(x)  is a density  function  whose  non-zero  range is small 

and includes a . To establish (a) requires  that 

or 

Let 



For positive limits on y , the integrand is positive. For 

negative  limits, the integrand is positive provided the limit 

is larger than 

Thus, given the lower limit  for which f ( y )  >, 0 we can find an 

E > 0 such  that (y2+4ya+€ a2) is positive  for 2 2 

y > , - 2 a + 2 a  



6. Examples 

a) One Degree of Freedom (See Figure 6.1) 

We have 

(6.1) 2T = mq2 , 2V = kq2 

or with the substitution 
Figure 6.1 

p = q &  

( 6 . 2 )  2T = i2, 2V = k/m p2 

For this system, the natural frequency is 

( 6 . 3 )  w 1 =Jk7;;; 

Now let the spring  constant  be the random variable (r.v.1 

defined by 

where B is a dimensionless r.v. with the properties 
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( 6 . 5 )  E[B] = 0, Var[B] = ug 

The natural  frequency  of t h e  disordered system is 

Clearly,  

E[Q;] = E[w:(l + B + 

V=[R ] = E[f i2]  - E2 1 1 

' . . ) ]  = w2(E[1] + E [ B ] )  = u2 1 1 

The estimate of' t h e  S.D. [a,] , A1 , vi13. 'De evaluated  using 

(5 .34 ) .  This requires the  evalua.tion of  I for  which the  second, of 
130 

( 4 . 9 )  will. be used.. T h i s  i s  the eas i e s t   exp res s ion   t o  use. Recall 

t h a t  in der iv ing   th i s   express ion  6 ( w  ) has been used f o r  g( A )  and f o r  

the  case at; hand the  o n l y  disordered  element is the   spr ing  constant ,   thus  

1 

all covarimces  involving  the A ' s  wil.1 be i d e n t j  c ~ l 1 . y  zero.  We e a s i l y  

obtain 



Thus, i n  t h i s   ca se ,   ou r  estimate agrees  with  the S.D. [a,] when 

terms of B2 are retained. 

b )  Two Degrees of Freedom System 

Consider  the two degree of freedom  system shown in   F igure  6.2. The 

springs are t h e  random va r i ab le s  Ki = k ( l  + Bi)  

Figure 6.2 



Then 

I" 

where the  r .v.  R1 and R 2  are the   na tura l   f requencies  of t h e  system 

shown in   F igure  6.2. 

Again make a change of var iab les ,  as i n   t h e  l as t  example, t o  t rans-  

form the   k ine t i c   ene rgy   t o  a uni t   matr ix .  

For t h e  mean system, i . e . ,  with = 0 we e a s i l y   f i n d   t h a t  Bi 

f o r   t h e   f i r s t  and  second mode, respect ively.  

Two cases can  be  considered, where t h e  Bi are independent  and when 

they  are  equal.  

A .  Consider  the case where t h e  Bi are independent, i . e . ,  

Usintr, equation (6.10) express ions   for   the  f irst  and  second moments can  be 

obtained. 



(6.12) E[Q,] = E 1 

K + 2K2 + /K: + 4K; 
E[Q:] = E[ 1 2m 1 

Expanding t h e  terns i n  the brackets and re ta in ing  moments of  second 

order ,  and using  equation (6.9) and the  t h i r d  and fourth  of  (6.7) t h e  

S.D. of 4 can be obtained. 

and i n  a similar fashion  for  R2 

K + 2K2 - JK2 + 4K$ 
E[n$] = E[ 1 1 2m 1 

EIR1] = (1.618 - .066 u;) wo 

These ca lcu la t ions   ind ica te  that the re  i s  more v a r i a t i o n   i n  R2 

t h a n   i n  R1 . 
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Reca l l   t ha t   t he   va r i ance  of a random variable i s  t h e  second moment 

about  the mean of t h e  random variable, t h a t  i s  

It i s  i n t e r e s t i n g   t o   n o t e  t ha t  f o r  t h i s  example the  second moment about 

t he  natural   frequency of t h e  mean system_ i s  equal t o  t h e  second moment 

about t he  system mean  when terms of second  order are retained.  

Thus f o r  t h i s  example 

and 

The est imates   for  S.D. [Q ] and S.D. [a,] 61 and cS2 respect ively,  1 
can  be  obtained by m i n e  equa.tion (5.34)  f o r  6 and  equa.tion (4 .9)  t o  

evaluate I . Agein it i s  noted t h a t  equation ( 4 . 9 )  provides   the 

easiest way t o  ge t  I and t h a t   t h e  only  disordered  elements i n  t h e  

system are the  springs. Thus in   using  equat ion (4 .9)  t o   eva lua te  I 

a l l  terms containing t h e  covariances of t h e  masses, t h a t  i s ,  the 

190 

190 

1 ,o 

covariance  of the A's w i l l  vanish. The r e s u l t i n g  6's are 

6, = .G567 woo 
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Comparing S.D. [n,] and S.D. [E2] with 6 and A 2  , 1 

respect ively,  it can  be  seen t h a t  €i2 i s  s l i g h t l y   l a r g e r   t h a n  

S.D. [Q,] but 61 i s  subs t an t i a l ly   l a rge r   t han  S.D. [a,] . To 

invest igate   the  source of th i s   d i screpancy   the   der iva t ion   of   the  

estimator  contained  in  Section 5 was examined. The source  of  the  error 

can bes t  be  seen  from  equation (5.11). In   the   der iva t ion  of the  es t imator  

the   t e rms   conta ined   in   the  summation on the  las t  l i n e  were dropped s ince 

from t h e  second of equations  (5.12) u = 0 . While these  terms  are  

small the  terms which they  are   mult ipl ied by i n  (5.11) may be la rge .  
r >fl 

Indeed it i s  just   th ,ese   terms  that   account   for   the  largest   por t ions of 

I as determined by (4.9). These ca lcu la t ions   a l so   revea l   tha t   the  

5 which  minimize I ( u ,  6 )  d i f f e r   s l i g h t l y  from t h e  ( * )  ; t h i s  

small discrepancy  a lso  contr ibutes   to   the magnitude  of I If 

these  terms  are  el iminated from I , we f ind  that the  value of 

so predicted i s  c l o s e   t o  S.D. [Q,] . In a l a t t e r   s e c t i o n  of t h i s  

1 , o  

3 
1,o 

1,o 61 

repor t  a method of   correct ing  these  errors  w i l l  be  described. 

B. Consider now the  case where B1 = B2 i .e .   the   disorder  i n  

the   spr ings i s  per fec t ly   cor re la ted .  

Following t h e  same procedure as i n  A above t h e  8 . D .  [SI,] and 

S.D. [a,] can  be  obtained. The present   case  only  differs  f r c m  t h e  last 

when terms of t h e  form E[B1B2] are  evalmted.  Previously  these  terms 

were zero  s ince  the B ' s  were  independent  where as new they  yield a u2 

Thus 

B '  



Folloving exac t ly   the  same procedures as i n  A with  the  exception of 

the evaluation of Cbv [ B  13 1 as noted  above, t h e  6’s can be determined 1 2  

‘J.’~P.Is wher; the springs are independent t h e  S.D. [ Q ]  is less t h a n   t h a t  

obto.ine:d when they are perfec t ly   cor re la ted .  The i n c r e a s e   i n   t h e  S.D. [ a ]  

in the scxonrl. case  i s  r e f l ec t ed  by  an  increase i n   t h e   e s t i n a t e d  ‘i . In  

th : ic  case t he  S.D. [nil i s  very close t o   t h e  corresponding bi  . 
For purposes of comparison, a Monte Carlo  simulation WRS done  on a 

d i g i t a l  computer.  Both cases  were inves t iga t ed ,   t ha t  i s ,  t h e  f i rs t ,  with 

the sprints being independent, and the  second,  with  the  springs  being 

perfectly  correlated.   In  each  case Monte Carlo estimates for   the   s tandard  

,J ’ 



devia t ion   of   the  first and  second natural   f requencies  were obtained.  In 

each  case, B and B2 are taken as normally  distributed  with mean 

zero and standard  deviation .1 . 1 

For  independent  springs aB = .1 C ov [B1B2] = 0 

S.D. [ill] = .0246 wo S.U. [ne] = .0565 wo 
h .- 

For per fec t ly   cor re la ted   spr ings ,  i . e . ,  El = Be , (3 = .1 ; B 
Cov [B1B2] = .1 

S.D.  [a,] = .0309 wo S.D. [a,] = .08090 wo 

&1 = .0309 wo &2 
= .00096 wo 

S.D. [a,] = .0315 wo S.D. [Q2] = ,0825 wo 
2. n 

where S.D. [ a ]  are the  estimates  obtained from the  Monte Carlo 

experiments  using 500 tr ials.  

. ,. 

In  both cases the standard  deviation as calculated,  when terms 

above  second o rde r   i n  (I are dropped, compare well w i t h  those 

obtained by Monte Carlo  estimates. When the springs  are  independent 



." . . . . . . . ." _" "" " ... . 

t h e  6's are la rger   than   the   ca lcu la ted  and t h e  Monte Carlo estimates 

of t h e  S.D. [n] . The overly  conservating estimate of 61 was 

commented on earlier. When the   spr ings  are per fec t ly   cor re la ted   the  

Monte Carlo  estimates of t h e  S.D. [Q] exceed  those  obtained  by  the 

other  methods by about 2%. Thus t h e  mean square estimates, 6 , are 

not s t r i c t  upper  bounds t o  t h e  S.D. [ a ]  . It should  be  noted  that 

the  6's are ve ry   c lose   t o   t he  Monte Carlo  estimates.  

c )  Nine-Degree of Freedom System 

The next  system we consider i s  shown in  Figure  6.3.  Only 

one spring i s  reearded as a r .v.;  it i s  kg and connects  the 7 and 

2-degree of freedom subsystems.  For t h e  mean system, B = 0 , t h e  

natural  frequencies  are  given  in  the  next  Table. 

Table 6.1 

mode no. 

k 

1 

2 

3 

I r  

5 

6 

7 

a 
3 

n . f .  mode shapes 

.364  .462 

.2900 -. 283 

.o .o 

-3540 .560 

3190 -. 615 
.o .o 

-.495 . lo1 

.o .o 

558 -. 069 



k? 4 

m,= 2 q* 

k,= I t  B 

, & y 6  

k6= 4 

,3Y4 k,= 4 

1, k,= 4 

Figure 6 . 3  
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Let US f irst  compute 6k for  each  natural  frequency by again  using 

equation (5.34).  This   requires   the  evaluat ion of I for   vhich 

equation (4.9) w i l l  again  be  used.  Since  the  only  disorder i s  associated 

w i t h  the   spr ings ,  i . e . ,  k9 equation (4.3) reduces t o  

1 ,o 

the  covariances of t h e  A ' s  vanishing.  Using  equation (6.9) equation 

(6.17) reduces t o  

Ut i l jz ing   the   nuner ica l  results given i n  Table 6.1, (5.34) and l e t t i n g  

G = .1 t h e  results given i n  Table 6.2 are   obtained.  B 

Appendix 6.1 contains a more de ta i l ed  development f o r   t h i s  problem. 

Let us next  estimate  the S.G. [E 1 using a Monte Carlo technique. k 

Fifzy s a q l e  values of 1 + D were obtained;  once  with B Gaussian 

(mean zero and S.3. [O.lO]) and twice w i t h  B uniformly  dis t r ibuted 

(mezn zero and S.C. [0.10]) . For  each s e t  of sample value of B , 
t h e  9 natural   f recuencies  were  computed  and t h e i r  mean frequencies and 

standard  deviations  calculated.  These S.D.'s a re   g iven   i n  Table 6.2, 

and t h e  mean natural frequencies are presented  in   Table  6.3. 



Table 6.2 

Standard  Deviation of fl k 

k 'k 

0199 

.0287 

.o 

.00882 

.0214 

.o 

.00817 

.o 

.00716 

0 

Monte Carlo Method 

Uniform Dist. Uniform Dist. Gaussian 

S.D. [a,] SOD. [%I S.D. [Qk] 

.0036 

.OUT 

.o 

.0024 

.0146 

.o 

.0030 

.o 

.0027 

0039 

.0128 

.o 

.0026 

.0161 

.o 

0033 

.o 

,0030 

0037 

.0116 

.o 

,0021 

,0143 

.o 

.0029 

.o 

.0026 



1 

2 

3 

4 

5 

6 

7 

8 

9 

Exact f o r  

Mean System 

3139 

.5204 

.7654 

1 0757 

1.2031 

1.4142 

1.6869 

1,8478 

1.9825 

Table 6.3 

Natural  Frequencies 

Monte Carlo Techniques 

i Uniform D i s t .  Uniform Dist. Gaussian 

Mean R k Wean R k Mean Qk 

.3124 

.5160 

7654 

1.0747 

1.1984 

1.4142 

I.. 6860 
1.8478 

1.9817 

.3126 

5169 

7654 

1.0748 

1.1996 

1.4142 

1.6863 

1.8478 

1.9819 

3125 

.5166 

7654 

1.0748 

1.1990 

1.4142 

1.6861 

1.8478 

1.9818 



The resu l t s   g iven   in   Table  6.2 are in t e re s t ing .  We first note t h a t  

t h e  S.D. [n ] as computed by t h e  Monte Carlo method do not   deviate  

s ign i f i can t ly  among each   o ther   for   the  same k even  though two 

k 

d i s t i n c t   d i s t r i b u t i o n s  were employed.  Second, we n o t e   t h a t   t h e   r e s u l t s  

for   the   un i form  d is t r ibu t ion   a l so  do not  deviate  appreciably between 

each  other   for   the same k , thus   ind ica t ing  small sample v a r i a b i l i t y  

with 50 sample values. It i s  c l e a r   t h a t  a l l  non-zero 6k are l a r g e r  

than   the  non-zero S.D. [Q,] ; t h i s  illustrates a point made i n  

Section 2. Put another way,  when t h e  6k are small, so a r e   t h e  

corresponding S.D. [ Qk] vhen t h e  6k are large,   the   corresponding 

S.D. [Q,] are not   necessar i ly   l a rge .   In   par t icu lar ,  we f i na l ly   no te  

t h a t  6, i s  considerably  larger   than S.D. [a,] ; t h e  same point  was 

and the  explanat ion  for   the 

1 , t h e  6k pred ic t   t he  

.I. 

no ted   i n   t he  2-degree of freedom  example 

difference i s  t h e  same. Except f o r  k = 

c o r r e c t   r e l a t i v e  magnitude  of t h e  S.D. 

It should  also  be  noted  that  it i s  only  necessary  to   calculate   the 

covariances  given  in  (4.9) once f o r  a l l  of   the  6k . Thus having 

evaluated  the  covariances  equation (6.18) can be used t o   e v a l u a t e  a l l  of 

t h e  6k , the   only  difference i s  evaluating I a r i s i n g  from the  use 

of  appropriate modal displacements. 
130 

d )  Twenty-Degree of Freedom System 

As the  next example, we shal l   consider  the system shown i n  

Figure 6.4 

57 



Figure 6.4 

We s h a l l  assume tha t   t he   r . v .  ' s  M and Kr. a r e  independent and 

independent of each o ther ,  and s a t i s f y   t h e   r e l a t i o n s  
J 

Disorder i s  thus   the  same i n   t h e   s p r i n g s  and i n   t h e  masses of t h e  system. 

The 6 ' s  will be  evaluated  using  the same procedures as i n   t h e  

previous  examples.  Equation ( 5 . 3 h )  w i l l  be  used t o   e v a l u a t e  gk and 

(4.91 will be used t o   e v a l u a t e  1 lyo(n , q )  . malua t ion  of (4.9) 

requi res  knowledge of the  systen? matr ix   in   t ranfomed  coordinates .  

k 

(k) 

20 20 . . 20 . 
2T = 1 1 A.. q.q = 1 Miqz 

i=l j=1 lj = J i=l 

20 20 
2v = 1 1 cijqiqj = 

i=l j=1 



Again  making a change  of  variables  to  transform  the  mass  matrix  into 

a unit  matrix  requires 

It  should  be  noted  that  this  transformation  involves  the  mean  masses m 

and  not  the  random  variables  Mi . Thus  typical  stiffness  and  mass  terms 
i 

after  the  transformation will be 

K. + Ki+l  K. + Ki+l 
1 c.. = - - 1 

11 mi m 

14 . Eli 
1 

1 
A.. = -  - 
11 m. m 
" 

Equation (4.9) is  more  formidable in  this  example  since  the 

covariance of  the A's no  longer  vanishes,  It  should  be  noted  that 

terms of the  form COV[A.  C. 1 still  vanish  since  the  masses  and  stiffnesses 

are  independent.  The  banding  in  the  stiffness  matrix  further  simplifies 

the  evaluation of (4.9). Using  expressions  similar to (6.9) 

lj 12. 

Equation (4.9) reduces to 
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where u2 = - k 
o m  

Equation  (6.20)  can  be  evaluated  under  three sets of conditions:  

a)  u i  = .01 ; 02 = o k 

b)  u: = 0 ; u: = .01 

c )  42 = .01 ; 0; = .01 m 

These r e s u l t s   a r e  shown i n  Firjure 6.5 , where the  ordinate   values  have 

been  connected  by smooth l i n e s   f o r  ease in   reading .  The main p o i n t   t o  

observe i s  t h a t  with  uniform  disorder  throughout  the  system 6 does  not 

decrease  with  increasing j , t he   d i so rde r   i n   t he  masses ac tua l ly  

producing a marked increase   in  6 . Again the  disorder   associated  with 

the  spr ings shows a marked increase  for   longer  modes. The 6 f o r  

j = 1, 2, 3 f o r  u = 0.1 are ,475, .240  and .163 and f o r  uk = a = 0.1 

are .4745, ,2404  and .165 respect ively,  which have  been deleted from the  

f igu re   fo r  convenience of scaling. 

j 

j 

3 

k m 



.I 0 

'j 

.O 5 

0 I .o 

Figure 6.5 



e )  A Simple Truss with Seven-Degrees of Freedom. 

The system i s  shown in   F igure  6.6, with  joints   designated by 

numbers and rods by l e t t e r s .  The rod areas are  considered as 

r .v. 's   with half each bar mass concentrated a t  the  rod  ends. Each 

j o i n t   c a r r i e s  an  added mass which i s  a l s o  considered as a r .v.  The 

k ine t i c  and potent ia l   energ ies  are 

. .   . .   . .  
(6.21) 2T = ls(x2+y2) + b12(xpy$) + M (x2+y2) + Mbx$ 1 1  3 3 3  

+ %'x3 - xl' 2 

+ % [(x, - x2)2 + 2 m x 3  - X2)(Y3 - Y,) + 3(Y3 - Y2P1 

+ KG [(x4 - x3)2 + 2J?(x4 - x3)y3 + ~ Y $ I  
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Figure 6.6 

where 

Ka = k ( l  + Xa) , a = A', B, b b .  G 

k = -  Ex 
11 , E = Young's modulus 

A' = mean rod area , e = bar length 

Ma = m ( l  + Xa) , m = pA'k 

p = mass per unit volume 

% = (MA + Mc + 13,)/2 + Mol 
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M2 = (bb + Mc + + %)/2 + MO2 

M3 = (% + + MG)/2 + MO3 

M4 = (% + M G ) /2  + M04 

M = m (1 + Y j  ) = mass car r ied  by point  j 
0 3  O J  

j = 1, 2, 3, 4 

E{Xa} = 0 , E { Y J I  = 0 a = A ,  B, G 

var x u =  02 , var Y = UJ" a 3 

We introduce the transformation 

(6.23) x l q =  zl 

x2dm2 = x -2 

x& = z3 

where 
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m = - + m  3m 
1 2 01 

3m m3 = 2 + mo3 

m = 2 m + m  2 02 

m 4 = m + m  ob 

Equations (6.21) and (6.22) now become 

M3 M4 + - h; + x;) + - x2 
3 "4 m 

+ 
X 

- 1 1  2 2 6  + 3 



I n  what follows,  coordinate "1 x 9 x1 9 * . * *  3 w i l l  always be 

employed. 

The 6k were calculated  using  formulas (4.9) and (5.34) for  

the  following cases. 

Case 1: mlo = m20 = m30 = mho = 1om; 5 0 f o r  j = 1, 2,  3, 4; 9 

u z 0 f o r  a = B, E, F, G, a 

and 

u A = u  , u C = u D = O  , 

then w i t h  

u c =  u ,  u A = u D = o  , 

then with 

u D =  u ,  u = u  - 0  , A C  

and f i n a l l y  with 

UA = uc = UD = u 

€6 



o = 1,026 rad/sec. 

w = 1,421 rad/sec. 

= 2,276 rad/sec. 

w4 = 2,616 rad/sec. 

= 3,469 rad/sec. 

w 6  = 4,057 rad/sec. 

= 4,294 rad/sec. 

1 

2 

w3 

w5 

The  results  are presented in  Figure 6.7. For each of  the four subcases 

indicated  above, we have plotted 6k as  ordinate vs ok as 

abscissa;  for  ease in identification, we  have connected  each  point with 

its neighbor  by means of a straight line segment; and we  have  labeled 

each  polygonal line  with the letter a corresponding to  the subscript 

or  subscripts for  which ua # 0 . The most important  conclusion to be 

drawn  is that  the 6k do not  necessarily  increase with increasing k . 

Case 2: mlo = m20 = m30 = 1om; 

u - 0  for a=A,B,C,D,E,F,G,; a 

and 

u l =  u , u2 = u3 = u4 = 0 , 

then  with 

u = u  , u 1 = u 3 = u 4 = 0  2 





then  with 

0 = u  3 

then  with 

u4 = 

¶ u1 = u2 = u 4 - L  - 

0 = u * 5 u 3 = 0  1 

and  finally  with 

u 1 = u 2 = u 3 = u 4 = u  . 

The  natural  frequenices of the  mean  system  are  the  same  as  given  in 

Case 1. The  results  are  presented  in  Figure 6 . 8 .  Again , we  have  plotted 
for  each  subcase 6k as  ordinate  vs % as  abscissa,  have  connected  each 

point  with  its  neighbor;  and  have  labeled  each  polygonal  line  with  the 

number  of  corresponding  to  the  subscript  or  subcripts  for  which u # 0 . 
While  there  is  no  general  trend  with  increasing uk when  individual  added 

pin  masses  have  variabilsty  it  is  clear  that  when all the  masses are  

independent  and  have  the  same  variance, % increases  nearly  linearly 

with uk ; this  is similar to  the  situation  encountered  in  Example (a). 

f) A 21-Degree of Freedom  Space  Frame 

The structure  that  we  shall  consider  is  shown in Figure 6 .9 .  It 

is  three-dimensional  and  has 12 joints  and 32 rods.  The  structure  is 

connected  to  rigid  ground  at  four  joints;  there  are  four  joints, A, B, 

C, and D at  the  next  level;  at  the  third  level  there  are  joints E, F, G, 

and H with EGH-JKL a rigid  mass.  The  rods  have  elasticity  and  mass;  we 

shall  assume  that  half  the  mass  of  each  bar is concentrated  at  its  end 
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points.  Each  joint,  except E, G, and H, may  carry additional  mass 

independent of rod masses. The joint masses are treated as  particles. 

The structure is  thus to be  modeled as slumped  parmeter system. 

An OXY2 coordinate  system is  shown  in  Figure 6.9. The displacemeht 

components with respect to this coordinate system  of  each joint will 

be laveled uA, vA, wA for example. The only joints  that we must 

consider  explicitly  are A, B, C, D, and F . The  rigid  mass  EGHJKL 
at the  top has  center of mass N ; this  mass  has displacements %, vN, 

w respectively, in  the  coordinate direction OX, OY, OZ, and angular 

rotations +, 8, JI about lines  through N parallel to  the coordinate 

directions. The displacements of E, G, and H will  be expressed in  terms 

of 3, vN, wN and 4 ,  8 ,  JI . The 21 independent  coordinates of  this 
system  are thus 

I? ' 

and we assume that  these are  small. The  system  thus  has 21 degrees of 

freedom. 

The kinetic  energy,  T , of the  structure is given by  the  formula 



J 

I F  

6 

B 



. . . 
(6.26) 2T = m (u2 + v i  + w i )  + mg($ + vg + w i )  A A  

.. *. 

.. . 
+ 122 - 21*3eJ, + 13$2 

where m is the mass of the j o i n t   o r  body labeled by the  subscr ipt  

( ) . While we have shown the r i g i d  mass EGHJKL as a t r iangular  
( 0 )  

r ight   cyl inder ,  t h i s  has only been f o r  convenience i n   i l l u s t r a t i o n ;   t h u s ,  

we assume it has moment and products of i n e r t i a  11, I*, I3 9 5 2  9 

'13' 123 with respect  to  rectangular  axes with or ig in  at N and 

p a r a l l e l   t o  OXY2 . The products of i n e r t i a  112, 113, 123 may not 

vanish, depending on the expl ic i t   na ture  of the r i g i d  mass EGHJKL . 
The potential  energy of the ( 0 )  rod is  
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where  now ( ) denotes  a  number  in  this  set;  for rods numbered 1 ' to 
9' , we  shall  write 

where ( - 0 )  is  one of the  numbers 1' , 2', . . . , 9' and ( 0 )  is  the 

corresponding  number  in 1, 2 ,  ..., 9.  

There  is  one  more  step  needed  before  we  can  write  down  the  expression 

for  the  potential  energy.  The  displacements  at E, G, and H must  be 

expressed  in  terms of those of the  rigid  mass.  Let  the  coordinates  of 

E, G, and H with  respect to NXYZ be, respectively, 

Tine potential  energy  is  now  seen  to  be 



+ 9k w2 + k4(16u6 - 24ucwc + 9 6 )  3 B  

+ 9k  w2 + kg(16$ + 24uAwA + 9~:) 7 D  
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The equations  of free motion are obtained  using  Lagrange's 

equat ions   in  the general  form 

where ( *  ) represents  one of the 21  generalized  coordinates.  If 

we assume i n   t h e  equation-s  of  motion that each  coordinate varies 

simple  harmonically  with  angular  frequency h and use the coordinate 

symbol as coordinate  amplitude  ( to  save  introducing new nota t ion) ,  

the  equat ions  for   the  natural   f requencies   and the corresponding  normal 

modes are 

(6.32) [16(k8 + k13 + ka + K ~ )  - mAh2]uA - ~ G K  v 9 A  

+ 12(k8 - k )w - 1 6 ~  u + 1 6 ~  V 
21 A 9 c  9 c  
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The e f fec t ive   sp r ing   cons t an t s   fo r   t he   p r imary  and  secondary 

members are given i n  Tables 6.4 and 6.5 respec t ive ly .  

Table 6.4 

EFFECTIVE  SPRING  CONSTANTS OF PRIMARY MEMBERS 

k9 = 19531. k17 = 10000. 

klo = 6908. k18 = 46296. 

k l l  = 19531. k19 = 10000. 

k12 = 19531. k20 = 46296. 

k13 = 19531. k21 = 10000. 

k14 = 46296. k22 = 19531. 

k15 = 10000. k23 = 19531. 

k16 = 46296. 

Table 6.5 

EFFECTIVE SPRING CONSTANTS OF SECONDARY MEMBERS 

The lumped weight  which i s  added t o  each jo in t  i n   a d d i t i o n   t o  

the   d i s t r ibu ted   we igh t   a s soc ia t ed   w i th   t he   s t ruc tu ra l  member is 

100 pounds. The weight of the   uppe r   s t ruc tu re  is 3.75 x lo4 pounds. 

The  moments and products of i n e r t i a  are g iven   i n  Table 6.6. 



Table 6.6 

MOMENTS AID PRODUCTS OF INERTIA 

+ e 

4 54398. 24867. 

e 24867. 54398. 

JI 0. 0. 

JI 
0. 

0. 

49735 

The na tu ra l  frequencies of t h e  system  without and with  the 

secondary members are   given  in   Tables  6.7 and 6.8 respect ively.  The 

corresponding mode shapes  are  given  in  Tables 6.9 and 6.10. 

Table 6.7 

NATURAL FREQUENCIES WITHOUT SECONDARY MEMBERS 



Table 6.8 

NATURAL FREQUENCIES WITH SECOIJDARY "BERS 

Consider now estimating  the  standard  deviations of t he  natural 

frequency.  Equations (5.34 and t h e  second  of  (4.9) w i l l  be  used as 

estimates of the  standard  deviation of the  natural   f requencies .  

(6.54) I [COV CijCip. - %(COV AijCie + COV CijAia) 
1 Y O  

+ t$ Cov  AijAi,,IujuL 

The evaluation  of I requi res  knowledge of  the  covariances  of  the 
1 Y O  

system members and t h e  modal matrix  of  the mean system. "he covariances 

of  the  system members must be  evaluated from the  members qua l i ty   cont ro l  

his tory,   or   es t imated from past   experience with similar systems, o r  



engineering judgment. The di f f icu l ty   in   eva lua t ing  I is that  the  

C and A , t h a t  i s ,  the  elements  of t he   s t i f fnes s  and mass 

matrices are complex functions of the system members as indicated by 

equations (6.32)  through  (6.52).  For t h e  proposed estimates t o  be  of 

1 9 0  

id i 3  

practical  value  equation (6.54) must be  capable  of  being  evaluated  by 

means of  the computer. This  can  be  achieved by evaluating  the mass and 

st i f fness   matr ices  when parameter  values of a l l  but one member are 

assumed t o  be  zero. 

The 6's for  several  choices  of  system  disorder will now be 

evaluated and compared with corresponding Monte Carlo  estimates  of  the 

S.D. [ai] . While the  system shown i n  Figure 6.9 i s  a lumped mass 

system with pinned j o i n t s ,  members which share a jo in t  will be assigned 

disorder. This i s  done t o  simulate,   within  the  l imitations  of  the model, 

a f au l ty   j o in t  and  account for   cor re la t ion  between members.  The 

coordinates  used t o  evaluate  the 6 ' s  will be  those which transform 

the mass matrix t o  a unity  matrix. For ease  of  notation, S%. [nil , 
will   designate the Monte Carlo  estimate  of  the  standard  deviation  of 

t h e  i t h  natural  frequency. 

The first case will consider members 1 and 8 having random spring 

constants  of t he  form 

K1 = k l ( l  + Bl) 

i n  which 



EIB1] = 0 = E[B2] 

Cov [B1B2] = .0025 

With members 1 and 8 disordered  the  system will be  considered  with  and 

without  the  secondary members. Table 6.9 gives  the 6's with  the 

spr ing  constants   correlated as i n  (6.55) and when they are independent. 

The first column g ives   the  mode number. The remaining columns give 

the   va r ious   r a t io s   o f  6 to   the   cor responding  mean system  natural 

frequency  times 100. l'hat is ,  it i s  a percent   var ia t ion.   Since  the 

presence  of  the  secondary members s ign i f i can t ly  raises t h e  lower 

na tu ra l   f r equenc ie s   t he   r a t io s  will be  used f o r  comparison. 

The following  observations  can be made from t h e  6's f o r  members 

1 and 8 disordered. 

1) The ef fec t   o f   cor re la t ion  with and  without  secondary members 

is small. That i s ,  the   d i f fe rences  between the  corresponding 

r a t i o s   i n  Table 6.9 are small. 

2 )  The presence  of member co r re l a t ion  can raise o r  lower t h e  6 ' s  . 
3 )  The 6 ' s  ge t   l a rge r   fo r   t he  lower  frequencies  although  the 

increase i s  not  monotonic. The 6's for   the  lowest   f requencies  

are very  large.  

4 )  The general  form  of t h e  6's with and  without the  secondary 

members a r e  similar although  several  terms show a marked 

difference.  For  example, t h e  6's for   the   h ighes t  and t h i r d  

highest  frequency show s igni f icant   var ia t ions .  



Table 6.9 

MEAN SQUARE ESTIMATES WITH ME3il3ERS 1 AND 8 DISORDERED. 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13  

1 4  

15 

_I 

16 

17 

18 

19 

20 

21 

With K 

Correlated  Uncorrelated 

43.33 45.96 

19 87 18.82 

13.62 13.24 

4.44 4 . I 4  

3.42 3.24 

77 9 73 

1.21 1.16 

1 e 1 5  1.18 

.82 .81 

30 31 

53 56 

54 52 

67 .63 

53 53 

9 37 .40 

.38  .36 

03 e 03 

1.20 1.14 

1.23 1.18 

.22 .22 

.21 .21 

Without K 

Correlated  Uncorrelated 

67 96 73 4 1  

51.02 53.04 

21.92 22.09 

8.18 7.75 

6.56 6.26 

1.07 1.08 

3.13 3.14 

.18 .18 

.16  .16 

1 .I8 1.18 

.86 .86 

09 .08 

15 915 

.36 .35 

92 92 

.16 e15 

. 01 .01 

2.25 2.15 

.24 25 

.20 19 

.004 004 



Mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

- 

17 

18 

19 

20 

21 

With K 

.632 

.188 

.468 

,217 

.226 

.06001 

.249 

.291 

.156 

.0244 

0798 

3703 

.16oG 

.1814 

.06401 

0551 

.11409 

- 5576 
9 945 

.Ob81 

0376 

Without K 

.662 

,506 

773 

. it1 5 

.464 

.0882 

,764 

.00202 

.00229 

233 

137 

.00142 

,00874 

.111 

.443 

,0144 

.0002209 

1,437 

.308 

.619 

.0000218 

Table 6.10 

EIONTE CARLO ESTIMATES WITH MB4BEBS 1 AND 8 DISORDERED 
AID CORRELATED 



Table  6.10  gives similar results f o r  Monte Carlo estimates, S.D. 
n 

The r a t i o  i s  the  percent  change with  respect  with mean system  natural 

frequency. Twenty samples  were  used t o   o b t a i n  S.D. [nil . The 

member disorder  i s  described by equations  (6.55)  with the underlying 

A 

distribution  being  uniform. The  Monte Carlo results are fo r   co r re l a t ed  

members. 

The following  observations  can be made from the Monte Carlo estimates 

f o r  members 1 and 8 disordered. 

1) The va r i a t ions  show  no obvious  trend  with mode number. This 

is  at var iance  with  the 6's . 
2)  For cer ta in   na tura l   f requencies ,   for  example the highest  and 

5 th   h ighes t ,   t he   e f f ec t s   o f  the secondary members can  be very 

large.  It should  be  noted that for  each  sequence  of Monte 

Carlo trials (i. e. , with and  without  secondary members ) t h e  

same random  numbers  were  used. The s t a t i s t i c a l   u n c e r t a i n t i e s  

i n  Monte Carlo  es t imates   in   evaluat ing  the 6's will be 

considered  la ter .  

3)  The variabil i ty  without  secondary members i s  l a r g e r  as would be 

expected,  i.e.,  the  redundancy  of  the  secondary members would 

be  expected t o  r educe   t he   ove ra l l   va r i ab i l i t y   i n   t he  system 

when the d i s o r d e r   i n  the primary  system  remains the same. 

The following  observations  can  be drawn when comparing t h e  6's and 
n 

S.D. [ a ]  f o r  members 1 and 8 disordered. 

1) With secondary members present 

95 



and  without  the  secondary members 

6 < S.D. [n2] 
lh 

2 

Thus Monte Carlo estimates of some of t h e  S.D. [Q's] of   the 

natural   frequencies  can  be  greater  than  the  corresponding 

6 ' s  . We also   no te  that these  Monte Carlo estimates can  be 

l a rge r   t han   t he   t rue  S.D.'s . 
2) The 6 ' s  f o r  low frequencies are very  conservative. 

3 )  When comparing the system with and  without  secondary members 

la rge   var ia t ions   for  61 , 6,+ and  were noted. The 

same va r i a t ion  i s  observed for t h e  Monte Carlo estimates. 
65 

Consider a second  case  with members 2, 9 ,  and 15  random. The 

covariance  used  are 

I .01 
1 ,0025 

.0025 

.Q10 

.0925 

,0025 

.0025 

.01 

Kany of the  general   observat ions  for  members 1 and 8, above, a lso  apply 

here. From Table 6.11, which g ives   the  6 ' s  with and without  the 

secondary members the  following  additional  observations  can  be made. 



1) The low frequency 6's are   l a rger   than   for   the   p rev ious  

r e s u l t s   f o r  random members 1 and 8. 

2 )  The high  frequency 6 Is are   not   s ignif icant ly   higher   than 

those   i n  1 and 8. Additional runs made with 5 cor re la ted  

random  members  show similar r e s u l t s .  

3)  The effects  of  covariance between members remains small. 

This i s  a lso   t rue   wi th  as many as 5 correlated members. 

Columns 2 and 3 of  Table  6.12 show S.D. [nil with secondary 

members f o r  20 and 40 Monte Carlo trials respect ively.  Column 4 shows 

S.D. [nil  without  secondary members.  The comparison  of  columns 2 and 

3 gives   an   ind ica t ion   of   the   s ta t i s t ica l   var r ia t ion   assoc ia ted  with t h e  

Monte Carlo  estimates. While many terms d i f f e r  only by 20 percent 

s eve ra l   d i f f e r  by a factor   of  two  and for SYD. [a,] the difference is 

several  orders  of  magnitude. Note t h a t   f o r   t h e  20 trial runs S.D. [a8] 

i s  extremely small. This  indicates  the  extent  of the underlying 

v a r i a b i l i t y  and the  inadequacy  of Monte Carlo methods using a small 

number of trials f o r  even t h e   r e l a t i v e l y  small system  under  consideration. 

It a l so   r a i se s   t he   ques t ion   o f   t he   u se   o f   t he  Sz. [Sa] as a standard 

for   the  evaluat ion  of   the 6's . 

cc 

h 

fi 

Fina l ly  comparing t h e  S.D. [ a .  3 with the corresponding 6's it 
#" 

1 

can  be  seen t h a t  

6i > S.D. [ai] i = 1, ..., 21 r 



Table 6.11 

LEAN SQUARE ESTIMATES WITH MEMBERS 2, g AND 15 DISORDERED. 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

- 

16 

17 

18 

19 

20 

21 

With K 

Correlated  Uncorrelated 

23.30  24.11 

17.14  18.68 

7.00 7.43 

4.04  4.21 

1.79 1 .go 

1.51  1.55 

1-79 1.86 

1.31  1.35 

1.36 1.39 

1.19 1.21 

1.02 1.01 

1.54  1.40 

1.23  1.12 

.01 .01 

1.41  1.35 

2.32  2.18 

.01 .01 

.33 .34 

30 29 

1.27  1.20 

.61 .GI 

Without K 

Correlated 

61.16 

22.05 

6.92 

5.07 

1.19 

3.01 

3.64 

5.00 

2.32 

2.62 

2.04 

13 

.86 

2.12 

2.12 

1.31 

.02 

09 

1.41 

1.42 

56 

Uncorrelated 

63.36 

22.84 

7.17 

5.27 

1.16 

3.25 

3.98 

5.46 

2.52 

2.71 

2.08 

13 

.84 

1.98 

1.98 

1.22 

.02 

09 

1.32 

1.32 

58 
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Table 6.12 

MONTE CARLO ESTIMATES WITH MEMBERS 2, g AND 15 DISORDERED. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

With K 

.08336 

.298 

,145 

.213 

.0512 

,229 

.498 

.207 

,226 

.343 

179 

,357 

,349 

,0000837 

.686 

1.455 

.0000882 

-0578 

.0363 

699 

,200 

With K 

,106 

.534 

.219 

390 

.0822 

325 

,662 

395 

.494 

.394 

,247 

,471 

571 

,227 

877 

1.261 

.000131 

0973 

0339 

.681 

.312 

Without K 

,198 

.108 

1279 

,344 

.0225 

.741 

937 

1 531 

.561 

.684 

.462 

.00504 

.156 

1.535 

773 

.446 

.000134 

.05007 

552 

719 

.324 
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In   evaluat ing  the rSk the terms i n  the  summation i n  forming 

I (u ,  ok) of  equation (4.9) must be col lected.  For  each  natural 

f requency  the  contr ibut ions  to  I (u,  %) associated  with  each 

component of  the  covariance of the disordered members i n   t h e  system 

1 Y O  

190 

can  be  grouped t o  form an  element  of  the so ca l led   sens i t iv i ty   mat r ix .  

This matrix  has one column and  one row f o r  each  disordered member. 

Thus, each  element i n   t he   ma t r ix  is  associated with the  corresponding 

covariance between members. Table 6.13 shows normalized s e n s i t i v i t y  

matr ices   for  rS1 and 1 5 ~  f o r  members 3, 10, 11 , 15 , and 16  disordered. 

Each matrix  has  been  normalized so t h a t  i t s  largest   value i s  1.0. For 

example, t h e  first element  of  the f irst  row, Sll , ind ica tes   the  

contr ibut ion  of   the  var iabi l i ty   of   the   third member, Cov [IC2] t o   t h e  3 
t o t a l   d i s o r d e r   i n   t h e  first natural  frequency. I n  t h i s  example it has 

the   l a rges t   in f luence  on t h e   t o t a l   V a r i a b i l i t y  of t h e  first na tura l  

frequency. Element S14 corresponds to   t he   con t r ibu t ion   a s soc ia t ed  

with  the  covariance between the t h i r d  and f i f t e e n t h  members, Cov[K K 1 

These matrices  give  very  detailed  information which relates t h e  
3 15 

variabi l i ty   of   each member and  between members t o   t h e   v a r i a b i l i t y   o f  

each  natural  frequency. 

Several   additional  cases have  been  considered  but  with  inconclusive 

r e s u l t s .  !i'hese were concerned  with  observing  the  effects  of small 

changes i n   t h e  system. M0nt.e Carlo  estimates were obtained  with  the 

members uncorrelated.  A second case   inves t iga ted   the   e f fec ts  of using 

a diagonal mass matrix; t h a t  i s ,  equat ing  the  products   of   iner t ia  of 

the  system to   zero .  I n  bo th   cases   the   s ta t i s t ica l   var ia t ion   assoc ia ted  



Table 6.13 

TYPICAL  SENSITIVITY  IWI'RICES 

ME34BEXfS 3,  10, 11, 15, AND 16 DISORDERED. 

1.0 

F i r s t  Natural  Frequency 

0.0 1.55~I.O'~ -. 231 

.056 - e  00631 0371 

.0214 0.0 

.637 

Fourth  Natural  Frequency 

.0129 0.0 0.0 ,0181 

1.0 0713 - .lo7 

e1533 0.0 

.3006 

-. 165 

-1 49~10'~ 

0.0 

.0768 

.251 

-. 00749 

0.0 

0.0 

-. 0209 

.0398 



with t h e  Monte Carlo  estimates masked small changes  and t h e   r e s u l t s  

were thus  inconclusive.  

The 6 ' s  were also obtained  for  several   single members t o   s e e  i f  

they a l l  exhib i t   the  sane character .  O f  pa r t i cu la r   i n t e re s t  are t h e  

6 ' s  f o r  t he  lower  frequencies. Members 1, 3 ,  8, 9 ,  10, 11, 15, 16 have 

been evaluated and a l l  except menber 9 show the  same general  form of 

the  6 ' s  , increasing markedly f o r  low frequencies. The 6 ' s  f o r  

member 9 were small for  both  high and  low frequencies. Member 9 was 

the  only  horizontal  menber invest igated.  

F ina l ly  a s tudy  of   the  effects  of coordinate  transformations was 

in i t ia ted .   S ince   the  E ' s  are estimates  of t h e  standard  deviations,  

i . e . ,  the 6's differ from the  S.D. i n  that  some terms, hopefully 

small, have  been deleted  in  evaluatine; them. If a different   coordinate  

system i s  used, one would expec t   d i f fe ren t   resu l t s .  As was mentioned 

e a r l i e r   t h e  6 ' s  have  been  evaluated  using  coordinates which transform 

the  mass m a t r i x   t o  a unity  matrix.  The question which remains i s  do 

resul ts   obtained from other   coord ina tes   d i f fe r   s ign i f icant ly  and  do 

they s t i l l  t e n d   t o   y i e l d  an  upper bound t o   t h e  S.D. [ Q ]  . In i t ia l  

resu l t s   us ing   the   o r ig ina l   coord ina tes   ind ica ted   tha t  t h e  6's a r e  

c lose   to   those   o r ig ina l ly   ob ta ined   bu t  6 .  < S.D. [n. ] f o r  more terms 

than   in  the earlier analysis .  

1 1 



Appendix 1, Section 6. 

This appendix  shall  work out i n  more detail  the  steps  performed  in 

the  nine-degree of freedom  system  example. 

The k ine t i c  and poten t ia l   energ ies  can be  wri t ten as 

7 

6 

The only  disordered  element  in  the  system is  

Kg = kg(l  + B )  

where 



The only  terms  in  the  system  equations which contain K have 
9 

been underlined. Note that  these  terms  only  involve  coordinates q4 

and q8 . The coordinates are now transformed so t h a t   t h e  mass matrix 

A will be a uni t   matr ix   in   terms  of   the  t ransformed  coordinates .  

For t h e  case at hand the  required  t ransformation i s  given  by 
i j  

Table A 6.1 shows the  s t i f fness   matr ix   in   t ransformed  coordinates .  

This matrix forms t h e  system  matrix  in  transformed  coordinates. Its 

eigenvalues will be  the same as those   fo r   t he   o r ig ina l  system  and t h e  

corresponding  eigen  vectors will be  used t o   f i n d   t h e  6, t h e  estimates 

of S.D. [a,] . Table 6.1 i n   t h e  text contains  the  eigen  values and 

the   four th  and eighth  eigen  vector component for  each  eigen  frequency. 

Equation (5.34) will again be  used to   eva lua te  6k . This   i n  t u r n  

requires  I (n(k), t) t o  be  evaluated  for which t h e  last of (4.9) 

i s  used. Note t h a t   t h e  A do not  contain  any  disordered elements, 

thus (4.9) i s  reduced t o  I (n = cov c. c. r-l 

1 3 0  

i j  
(k )  ( k )  (k )  

190 l j  l a  j ' 
As was noted  earlier,   the  only  matrix  elements which contain 

K!3 
are C44. Cb8, C843 and c88 . Thus covariance  of all terms not  containing 

one of these  terms w i l l  vanish. 

Thus 

104 



Table A 6.1 

STIFFNESS MATRIX 111  TRANSFORMED  COORDIRATES 

p1 p2 p3 p4 p5 p6 p7 '8 p9 

kl+k2  -k 2 
" 

-k2  k2+k3 -k 
P --- 3 

-kg  k3+k4  -k4 

p3 5 m3 Jm?mL "- 

p4 

p5 

p6 

p7 

p9 

-k 5 - 5 6 -k6 k +k 
" 

J"4"5 m5 Jmsms 
-k6  k6+k7 -k "- 7 

m6 6 9  
-k k  +k 
" 7 7 8  

9 10 10 

m8 Jms"9 
k +k -k 

-k 10 k lo  
" 

- 9  m 



Each of  the above covariances must be  evaluated.  Noting  that 

C = C provides some s impl i f ica t ion .%  i l lus t ra te   the   p rocedure   the  

first two terms w i l l  be  evaluated. 

ij ji 
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Thus the first term  of Ilyo(n , ok) is  (k) 

Since   there   a re  no other  terms with t h i s  coefficient  corresponds 

t o   t h e  first of  equation (6.18). I n  a similar fashion  the  remaining  terms 

can  be  evaluated t o   y i e l d  (6 ~ 8 ) .  

4 

A s  an i l l u s t r a t i o n  6 will be  evaluated 4 



On using CJ = .1 and the  values   in   Table  6.1 i .e .  B n4 ( 4 )  = .354 , 

and  using  equation (5.34) 

This i s  the  value shown i n  Table 6.2. Similar  calculation  can  be made 

fo r   t he   o the r  modes. Hote that   the   covariances need only be  calculated 

once  since  the only difference between I ( T - I ( ~ ) ,  wi) and Il,o(~ (J 1 , w j  ) 

(i # j) is t h e  mode shape i n  equation (6.18) 
190 
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7. Improvement in   Resu l t s  and Discussion. 

The estimator B k  has  been  consistantly  high  for low k i n  each 

of t he  examples  presented.  This  section will discuss two ways of 

imyoving  these  es t imates .  The use  of  equation (5.34) t o   e v a l u a t e  Bk 

requi res   tha t  I ( 0 )  be  evaluated. The first methods are  concerned 
1¶0 

with  improving  the  evaluation of I ( E ' ,  wk) . Equation (4.9) has 

been  used t o  approximate I ( 5  * , or;) by  using  the mode shapes TI 

1¶0 
(k)  

190 I) 

f o r   t h e  mean system  for  the 5' . Two a l te rna t ives   a re   poss ib le .  

Evaluation  of  the  covariances  in (4.9) and s u b s t i t u t i n g   i n  e. par t i cu la r  

w from the  mean system  establishes a coe f f i c i en t   ma t r ix   t o  u  u f o r  k i j  

each  eigen  frequency. The lowest  eigenvalue  of  this  matrix which we 

shall c a l l   I ( m a t r i x )  i s  a minimum of I for the  given k . The 
1¶0 

eigen  vector which corresponds t o  E '  can  be  substi tuted  into (4 .9 )  

have  been  evaluated  using  the  nine-degree of freedom  example  and a r e  

shown i n  Table 7.1. While I (5 ' wk) i s  consistantly  lower  than 

e i t h e r  I ( T I  wk) o r  I(matrix) , t h i s   d i f f e r e n c e  i s  r e l a t i v e  

ins igni f icant .  

1¶0 
(k )  

1 ¶O 

Table 7.1 
Comparison  of estimates of I(<', 

,00157 

.000892 

0 

.000360 

,00264 

0 

.000760 

0 

.000807 

.000147 

.000878 

0 

000337 
.00262 

0 

000757 
0 

.000805 

I (matrix) 

.000152 

.000885 

0 

.000349 

.00263 

0 

000759 
0 

.000806 

3 



The second method of  improving the  es t imator  6k makes a 

correct ion by accounting  for  terms which weredroppedin  the  derivation. 

Returning t o  equation (5.11) 

In  forming  the  estimator, we used I (n , uk) s i n c e   t h i s  i s  easy t o  

compute from information on t h e  mean system and covariances  of  the 

various terms. We discarded t h e  second sum on the   r i gh t   o f  7 ( ) i n  

(5.11 ) . A bet te r   es t imator  can  be  formed a t  t h e  expense of addi t iona l  

e f f o r t  by using, i n   p l ace  of I ( ) 

(k) 
l , o  

130 

!Jhile any  of t he   t h ree  methods for   evaluat ing 7 ( 5 ' ,  wk) can be used, 

, w,) will be  used  since it i s  the  eas i e s t   t o   eva lua te .  The (1: 1 
I1 $('I 

terms within  the  double summation are obtained by contr iving 2 (a  = 2)  

o r  more sa-nple sys t em such tha t   t he   va r i ance  of each  element i n   t h e  

ensemble of systems i s  equa l   t o   t ha t   i n   t he   o r ig ina l   ca l cu la t ion .  Using 

t h e  last of (5.10) the  w '  can  be  evaluated t o  form the   cor rec t ion .  

This has been done f o r   t h e  two-degree  of  freedom and t h e  nine-degree of 
r ¶U 

freedon  systems  considered  in  Section 6. 



I n   t h e  two-degree  of  freedom  example, we considered Case A i n  

which the  Bi are  independent. Two sample  systems  were  formed  such 

t h a t  VAR Bi = .01 , i = 1, 2 The values I1,o(n (k) , uj) , 
w 

a 94 (k) , and vt , k = 1, 2  were computed;  and expression 
k,u k,a 
(7.1) was evaluated. When t h i s  was used i n  place  of I (n , tok) i n  

(5 .34)   the  value  obtained  for  dl became .311 w u instead  the  value 

given by the first of (6.14); t h e  new d2 was subs t an t i a l ly  the same as  

the   o ld .  These  computations  were ca r r i ed  out using a desk  calculator .  

(k) 
1,o 

O B  

This second method was also  appl ied  to   the  nine-degree  of  freedom. 

To evaluate   the  effect iveness  of the   cor rec t ion ,  a four sample  systems 

ensemble was se lec ted  so t h a t  &ob., (B = 2 .1265, 2 .06325) = 1 / k  , 
which gives a var iance  equal   to  that i n  our or ig ina l   ca lcu la t ions ,  

u2 = .01 . Applying the   co r rec t ion   t o  Ils0( n (k)  , uk) , we computed 

the  dk , k = 1, 2, ..., 9 
B 

Table  7.2 shows the  average  of  the Monte Carlo r e s u l t s  shown i n  

Table  6.2; the   o r ig ina l   es t imates  for t h e  dk ; and the  corrected 

estimates  just   obtained. 

k 

Table  7.2 

Evaluations  of  Correction Terms 

Original  Estimated  Average Monte 

'k 

0199 e 0037 
.0287  .0120 

Carlo 

0 0 

.00882  ,0024 

.0214 .015 

0 0 

.00817 0031 

0 0 

.00716  .0028 

Corrected 
Estimates 

00215 

. 011 5 
0 

.00145 

.0147 
0 

.00300 

0 

,00270 



The improvement of the  estimates bo th   fo r  low and  high mode numbers 

i s  s t r iking,   being  within 5 %  of t h e  Monte Carlo estimates i n  most cases. 

The corrected estimates are now s l i g h t l y  below those  obtained from t h e  

14onte Carlo simulation. In Tables 7.1 and 7.2, zeros have  been  used 

for mode numbers 3,  6 and 8 t o   i n d i c a t e   t h a t  a l l  had  exponents  of 

o r  less. 

It should  be  noted  that   th is  improvement i s  obtained at t h e  cost of 

solving m , the number of sample  systems i n  the ensemble, addi t ional  

nth  order  eigenvalue  problems f o r  eigenvalues  and  vectors. 



Summary of  formulas  needed t o   o b t a i n  estimates of   the  s tandard 

deviation, 6k , of   the  kth  natural   f requency  of  a disordered system. 

The differential   equations  describing  the  system are t o  be 

transfornred i n t o   t h e  form 

2T = Ai3qiqj ; 2v = c q 9 i j  i j 
. .  

where t h e  A = 6 + B . 
The Bij represent  the  normalized  disorder  associated with t h e  

i j   i j  i j  

system's mass matrix. The s tandard  deviat ion  of   the  kth  natural  

frequency i s  estimated by 

where 

% i s  the circular  natural   frequency  of  the  kth mode of t h e  mean 

system, n (k)  i s  the  normalized mode shape  corresponding t o   t h e   k t h  

natural frequency Il,o(n yc) is  a measure of disorder  defined by 

equation (4.9 ) 

(k 

where 



rl (k) i s  the  eigenvector  associate w i t h  the k t h  mode of t h e  mean 

syster!] i n  transformed  coordinates. 

The evaluation  of I (T-I ok)  requires knowledge of t he  

natural  frequency, tok and associated mode shape, rl obtained 

by solvinp: the  eigenvalue problem f o r   t h e  mean system fo r   t he   k th  mode. 

( k )  
1,O 

Evaluation  of  the  covariance  of  the CIS, A's and CA's requires  knowledge 

of the  covariances  of  the member disorders .  If the  disordered stiffness 

and masses are represented by K = k i ( l  + Bi) and I'li = m i ( l  + Di)  

respective7 y , then 

i 

Cov[R.B.] Cov[D D ] , and Cov[D R 3 are  required.  
1 J  i j  i j  

A more ref ined estimte of 6k can  be  obtained by substract ing 

the following  correction from I (rl (k) 
1 Y O  

IT. N 

where 

IT. i s  a small number of sample  systems  used to   ob ta in   the   cor rec t ion  

PfJ 

w is  the  r t h   n e t u r d  frequency  associated  with  the  ath sample 

i s  the  probabi l i ty   associated  with each sample system 

r Y 0  

system 

rl i s  the  eigenvector  associated with the  r t h  mode of t h e   a t h  (r  1 
5 ,(J 

sample  system. 



The parameter  values  and  probability, pa , associated with each  sample 
system  should  be  selected so that the statistics of the ensemble  match 

those of the original syst-em. Evaluation of w and the v '  

requires  the solution of an eigenvalue problem for each u . The tSk 

obtained  using this correction will not necessarily be upper bounds to 

the corresponding  standara  deviations. 

r 3Q r 3 0  



CONCLUSION 

A method has  been  presented  for  estimating  the  variabil i ty  of a 

system's   natural   f requencies   ar is iqg from t h e   v a r i a b i l i t y  of t h e  

system's  parameters. The only  information  required  to   obtain  the estimates 

i s  t h e  member v a r i a b i l i t y ,   i n   t h e  form of  second  order  properties, and 

the   na tura l   f requencies  and mode shapes  of  the mean system. It has 

a l s o  been e s t ab l i shed   fo r   t he  systems  studied  by means of Monte Carlo 

estimates tha t   the   spec i f ica t ion   of  second order   propert ies  i n  an 

adequate  description  of member va r i ab i l i t y .  The method i s  s t ructured 

i n  a way which f a c i l i t a t e s   t h e   u s e  of  computers for   ob ta in ing  estimates 

f o r  complex systems. The v a r i a b i l i t y   i n  any natural  frequency  caused 

by  each s t ruc tu ra l  element  can  be  obtained.  These sens i t i v i ty   coe f f i c i en t s  

can be used t o  establish bounds  on member v a r i a b i l i t y   t o   s e c u r e  a 

spec i f ied   var iab i l i ty   o f  a system's  natural   frequencies.  From another 

point  of  view th is   in format ion   can  be used t o   i n d i c a t e  which s t ruc tu ra l  

elements w i l l  have the   g rea t e s t   e f f ec t  on a given  natural  frequency. 

Final ly ,  by add i t iona l   e f fo r t   t he  estimates can  be improved t o  make 

them less   conservat ive.  

To implement these  methods information i s  now required on t h e  

v a r i a b i l i t y  of s t ruc tu ra l  members. 
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